5 S-8 $$CH = S$$ $$CH = S$$ $$CH = S$$ $$CH_{2/3}$$ $$CH_{2/3}$$ $$CH_{3/2}$$ $$CH_{3/2}$$ $$SO_{3} - (H_{5}C_{2})_{3}NH^{+}$$ $$10$$ CI S-9 15 $$CI$$ NH— C+CH₂), O CI NH— C+CH₂), O CI 15 16 CI 16 CI 17 The dried coatings were exposed sensitometrically to a 3000K tungsten source for 0.1 second through a step 40 tablet ranging in optical density from 0 to 4 units. Processing was done through a standard Kodak RA4 process. The logarithms of the relative speeds were determined at a density of 1.0 above fog. The sensitometric responses are given below. 45 TABLE V | Sensitizer | Log Rel.
Speed | Contrast | |---|-------------------|----------| | 0.63 mg Na ₃ Au(S ₂ O ₃) ₂ —
2H ₂ O (Comparison) | 158 | 193 | | 0.30 mg Na ₂ S ₂ O ₃ —
5H ₂ O,
0.79 mg compound 1 (Invention) | 167 | 211 | It is seen from this data that a compound of the present invention used in combination with one molar equivalent of sulfur sensitizer results in a higher contrast compared to sensitization with aurous dithiosulfate, which inherently contains two equivalents of the sulfur sensitizer thiosulfate. The invention has been described in detail with par- 60 ticular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. What is claimed is: 1. A gold (I) compound of the formula AuL₂+Xwherein: L is $$-S \xrightarrow{\begin{array}{c} R_1 \\ N-N \end{array}} R_3$$ R_1 is CH_3 R_2 is CH_3 , $CH_2CH=CH_2$, $CH_2CH_2OCH_3$, NH_2 , C_4H_9 , C_6H_{11} or C_6H_5 R₃ is CH₂ or C₆H₅; and X- is BF₄-,l¹, Br-, or Cl-. 2. The compound of claim 1 wherein R_2 is CH_3 , R₃ is CH₃, and X is BF₄-. 3. The compound of claim 1 wherein R_2 is $CH_2CH = CH_2$, R₃ is CH₃, and X- is BF_4- . 4. The compound of claim 1 wherein R₁ is CH₃, R₂ is CH₂CH₂OCH₃, R₃ is CH₃, and X- is BF_4- . 5. The compound of claim 1 wherein R₁ is CH₃, R_2 is HH_2 , R₃ is CH₃, and X- is BF₄-. 6. The compound of claim 1 wherein R_1 is CH_3 , R_2 is C_6H_5 , R_3 is C_6H_5 , and X - is BF4- $$\begin{bmatrix} C_6H_5 & C_6H_5 \\ N-N & N \\ N & N \\ S-Au-S & BF_4^- \\ N & N-N \\ N-N & N \end{bmatrix}$$ 7. A gold(I) compound of the formula 8. A gold(I) compound of the formula $AuL(L^1)+X$ wherein: L is $$\begin{array}{c} R_1 \\ N-N \\ N-N \end{array}$$ $$\begin{array}{c} R_1 \\ N-N \end{array}$$ $$\begin{array}{c} R_2 \\ R_2 \end{array}$$ 50 and R_1 is CH_3 , R₂ is CH₃ or CH₂CH=CH₂ R₃ is CH₃ $L^{\dagger}=P(CH_3)_3$ X- is Cl- or BF₄-